
STEMS EFFICIENT 1.0.0

by zplane.development

(c) 2022 zplane.development GmbH & Co. KG

September 21, 2022

Contents
1 STEMS EFFICIENT Documentation 2

1.1 Introduction . 2
1.2 API Documentation . 3

1.2.1 Latency Modes . 3
1.2.2 Memory Allocation . 3
1.2.3 Naming Conventions . 3
1.2.4 Instance Handling Functions 3
1.2.5 Process Functions . 4
1.2.6 Parameter Retrieving and Setting Functions 4
1.2.7 C++ Usage example demonstrating the functionalities of a sin-

gle instance . 5
1.2.8 C++ Usage example demonstrating the combined use of low

and high latency instances 7
1.3 Support . 9

2 Namespace Index 9
2.1 Namespace List . 9

3 Class Index 9
3.1 Class List . 9

4 File Index 10
4.1 File List . 10

5 Namespace Documentation 10
5.1 zplane Namespace Reference . 10

6 Class Documentation 10
6.1 zplane::Stems Class Reference . 10

6.1.1 Detailed Description . 11
6.1.2 Member Enumeration Documentation 11
6.1.3 Constructor & Destructor Documentation 13
6.1.4 Member Function Documentation 13

7 File Documentation 16
7.1 /work/project/docs/docugen.txt File Reference 16
7.2 Stems/Stems.h File Reference . 16

7.2.1 Detailed Description . 17

Index 18

1

1 STEMS EFFICIENT Documentation

1.1 Introduction
STEMS EFFICIENT is a source separation and stem generation algorithm that is ca-
pable of separating any stereo mixture into vocals, bass, drums, and ”other” (4 stereo
stems in total).

The underlying algorithm in STEMS EFFICIENT is based on a single deep neural
network designed to be most efficient while retaining a maximum of quality. Internally,
STEMS EFFICIENT works by analyzing small chunks of audio one at a time and
estimating all instruments for that audio chunk. The STEMS EFFICIENT interface
allows the user to set the output block size according to their needs. Additionally, post-
processing can be applied to further enhance separation. An overview of the algorithm
is shown below.

Figure 1: Overview of the source separation algorithm

This document contains all information you need to get started and use STEMS
EFFICIENT to the best of its abilities. At its core are in-depth descriptions of the API
through usage examples provided in the StemsClMain.cpp and StemsClCrossfade←↩

Example.cpp files. These examples demonstrate all the functionalities of STEMS E←↩

FFICIENT and can be used to get started as quickly and easily as possible. What
follows is a detailed documentation of the STEMS EFFICIENT interface along with
all of the methods and structs contained within.

2

1.2 API Documentation
1.2.1 Latency Modes

The STEMS EFFICIENT API has two latency modes, ”high” and ”low”, as defined
in enum Stems::LatencyMode. The normal and recommended mode is ”high”. For
even more efficiency and when playback needs to happen quickly, the user can choose
the ”low” latency mode. In this case, STEMS EFFICIENT processes smaller chunks
of audio at a time and therefore outputs to the stream quicker and more often. In
low latency mode, the quality is slightly deteriorated. The latency mode is set during
initialization of STEMS EFFICIENT and can't be changed afterwards. The following
figure illustrates this behavior. Note that the output block size can be set to be the same
in both cases.

Figure 2: Illustration of the latency modes

1.2.2 Memory Allocation

The STEMS EFFICIENT SDK does not allocate buffers handled by the calling ap-
plication; the input buffers must be allocated by the calling application. Input audio
buffers are allocated as double arrays of size [numChannels][maxBlockSize] where
maxBlockSize should be the value returned by Stems::getMaxFramesNeeded(). Note
that the value returned by Stems::getMaxFramesNeeded() depends on the latency
mode as well as the input sampling rate. The 4 output buffers (one for each instrument),
are allocated as double arrays of size [numChannels][blockSize] where blockSize is the
output block size chosen by the user.

1.2.3 Naming Conventions

When talking about frames, the number of audio samples per channel is meant. For
example, 512 stereo frames correspond to 1024 float values (samples). If the sample
size is 32bit float, one sample has a memory usage of 4 bytes. An audio block is a
sequence of consecutive frames with a given length.

1.2.4 Instance Handling Functions

• ErrorType Stems::initialize (int numChannels, float sampleRate, int max←↩

Outputblocksize, LatencyMode latencyMode);

– Initalizes a STEMS EFFICIENT instance.

• ErrorType Stems::reset() ;

3

– Resets all internal variables and buffers to the default state. The return
value indicates whether an error occurred or not.

1.2.5 Process Functions

• ErrorType Stems::process(float const∗ const∗ const ppfInputBlock, std←↩

::size t numInputFrames, float∗ const∗ const ppfOutputBlock)

– Performs the actual stems separation processing if the number of frames
provided is as retrieved by Stems::getFramesNeeded().

• ErrorType Stems::finishProcessing(float const∗ const∗ const ppfInputBlock,
std::size t numInputFrames)

– Signals the end of the processing loop. Input contains the remaining sam-
ples of the input signal that should be processed. numInputFrames must
be less than the length reported by Stems::getFramesNeeded(), otherwise
process can still be called. This function must only be called once. After a
call to this function, no further calls to process() are possible.

• ErrorType Stems::flushBuffer (float∗ const∗ const ppfOutputBlock, std←↩

::size t& numOutputFrames)

– Gets all the remaining internal frames when no more input data is available
and writes them into the buffer ppfOutputBlock. Returns the number of
written samples. The use of this function is optional.

1.2.6 Parameter Retrieving and Setting Functions

• ErrorType Stems::setOutputBlockSize (std::size t outputBlockSize)

– Sets the output block size.

• std::size t Stems::getFramesNeeded();

– Returns the required number of sample frames in order to obtain a full
output block during the next call to Stems::process()

• std::size t Stems::getMaxFramesNeeded();

– Returns the maximum required number of frames needed.

• void Stems::setEnablePostProcessingOnInstrument (Instrument instrument,
bool activatePostProcessing);

– Applies post-processing on a selected instrument. The post-processing here
reduces interferences from other instruments and improves separation for
the selected instrument. Post-processing can be activated or deactivated
during processing. Post-processing can also be activated for multiple in-
struments.

• bool Stems::getEnablePostProcessingOnInstrument (Instrument instrument);

– Returns information on the current activation state of post-processing for a
given instrument.

4

1.2.7 C++ Usage example demonstrating the functionalities of a single instance

The complete code referenced here can be found in the example source file
StemsClMain.cpp. An overview of the processing steps and buffer management is
illustrated below.

Figure 3: Flow chart illustration

In the first step, an instance of STEMS EFFICIENT must be created. Note that
this is different to how you would create an instance of previous zplane SDKs.
After instantiation, we use the Stems::initialize() method to prepare STEMS EFFI←↩

CIENT to be used.

zplane::Stems stems;
error = stems.initialize(inputFile.GetNumOfChannels(), inputFile.GetSampleRate(), kBlockSize,

zplane::Stems::LatencyMode::high);

In this case, we initialize the instance of STEMS EFFICIENT just with the chan-
nels and samplerate from the audio file to be processed. We also have to set the desired
output block size here as well as the latency mode. After initializing, we can optionally
set the post-processing to certain instruments. This can also be done later on.

stems.setEnablePostProcessingOnInstrument (

5

zplane::Stems::vocals, true);

Now that we have initialized our instance of STEMS EFFICIENT, we can now
allocate our input buffer according to the maximum of frames needed by the instance:

ppfInput[i] = new float[stems.getMaxFramesNeeded()];

The output buffers are allocated with the desired output block size, and with the
total number of channels of all our stems. In this case, we have 4 stereo stems, so the
output buffer has 8 channels.

auto numOutputChannels = vocalsFile.GetNumOfChannels() + bassFile.GetNumOfChannels() + drumsFile.
GetNumOfChannels() + otherFile.GetNumOfChannels();

And:

ppfOutput[i] = new float[kBlockSize];

Now that we have allocated all our buffers, we can start processing. We start
the process loop by asking our STEMS EFFICIENT instance how many frames are
needed for processing.

size t inputSize = stems.getFramesNeeded();

We then read the audio file and fill the input buffer:

numFramesRead = inputFile.Read (ppfInput, inputSize);

The process function can then be called with the required number of input frames.

stems.process(ppfInput, numFramesRead, ppfOutput);

If there was no error, we can simply write out the output buffers for each instrument.
Note that the output buffer has 8 channels for each of the 4 stereo stems.

vocalsFile.Write (&ppfOutput[0], kBlockSize);
bassFile.Write (&ppfOutput[2], kBlockSize);
drumsFile.Write (&ppfOutput[4], kBlockSize);
otherFile.Write (&ppfOutput[6], kBlockSize);

Once all available blocks have been fed to STEMS EFFICIENT and the last sec-
tion of audio is smaller than number of frames required by the instance, the process
loop is exited.

We can now call Stems::finishProcessing() to process the last section of audio.

stems.finishProcessing (ppfInput, numFramesRead);

Afterwards, to get the remaining samples in the internal buffer of STEMS EFFI←↩

CIENT, we need to call the Stems::flushBuffer() method and write the samples to the
output files.

stems.flushBuffer(ppfOutput, numOfOutputFrames);

After successful processing, we can simply close the audio files.

6

1.2.8 C++ Usage example demonstrating the combined use of low and high la-
tency instances

This example aims to showcase the combined use of ”low” and ”high” latency in-
stances of STEMS EFFICIENT. In this first example, the low-latency instance is used
to process the first few audio blocks (at a faster rate) while the high-latency instance is
processing a later block in parallel. To bridge the gap smoothly between the outputs of
both instances, a simple crossfade is applied. A schematic illustration of the processing
flow is provided below:

Figure 4: Illustration of the combined use of low and high latency instances

Much of this example is similar to StemsClMain.cpp but, in this particular example,
only two instances of STEMS EFFICIENT are initialized:

zplane::Stems stemsHigh;
zplane::Stems stemsLow;

errorHigh = stemsHigh.initialize(inputFile.GetNumOfChannels(), inputFile.GetSampleRate(),
kBlockSize, zplane::Stems::LatencyMode::high);

errorLow = stemsLow.initialize(inputFile.GetNumOfChannels(), inputFile.GetSampleRate(),
kBlockSize, zplane::Stems::LatencyMode::low);

Accordingly, each instances requires a different number of frames for processing:

size t maxFramesNeededHigh = stemsHigh.getMaxFramesNeeded();
size t maxFramesNeededLow = stemsLow.getMaxFramesNeeded();

The input buffer thus has to be allocated with the maximum frame length it might
need:

ppfInput[i] = new float[std::max(maxFramesNeededHigh, maxFramesNeededLow)];

Both instances of STEMS EFFICIENT can use the same input buffer. But in this
case, we have to allocate output buffers for each instance of STEMS EFFICIENT and
the crossfade, or sum of the two outputs:

ppfOutputLow[i] = new float[kBlockSize];
ppfOutputHigh[i] = new float[kBlockSize];
ppfOutputSum[i] = new float[kBlockSize];

7

Also, because both instances read from the same input file, read positions for each
instance have to be saved and set individually before reading and processing the input
file. The idea here is that we can decide beforehand at which frame the high-latency
instance will start processing; appropriately, the low-latency instance will process from
the beginning up until that point. So the initial read position of the high-latency instance
serves as threshold for the low-latency instance. We also have to make sure that the
initial read position of the high-latency instance is divisible by the output block size
defined by the user so that the instance starts processing at the start of a block.

int readIndexLow (0);
int readIndexHigh (128000);

We also defined the length in frames of the crossfade section following the initial
processing of the low-latency instance.

int crossFadeLength (3072);

In the next step, the process loop of the low-latency instance can be executed. This
loop is very similar to the StemsClMain.cpp example.

We break the loop when the threshold is reached, and save the current read position
of the low-latency instance:

if(currentOutputBlock * kBlockSize >= readIndexHigh)
{

readIndexLow = inputFile.GetFilePos();
assert(readIndexHigh == vocalsFile.GetFilePos());
break;

}

Next, we can start the crossfade section. Both instances process the same audio
section and the outputs from both are mixed together using a simple linear ramp. First,
the audio data is read for the low-latency instance:

size t inputSizeLow = stemsLow.getFramesNeeded();
// read audio data
inputFile.SetFilePos(readIndexLow);
framesRead = inputFile.Read (ppfInput, inputSizeLow);
readIndexLow = inputFile.GetFilePos();

Note that the read position is set before reading and saved afterwards. Then pro-
cessing is applied:

stemsLow.process (ppfInput, framesRead, ppfOutputLow);

Same is done for the high-latency instance:

size t inputSizeHigh = stemsHigh.getFramesNeeded();
// read audio data
inputFile.SetFilePos(readIndexHigh);
framesRead = inputFile.Read (ppfInput, inputSizeHigh);
readIndexHigh = inputFile.GetFilePos();

And again processing is applied:

stemsHigh.process (ppfInput, framesRead, ppfOutputHigh);

8

Note that, despite the two instances having different input sizes, the output blocks
have the same lengths. Therefore, now that we have processed the same output block
with both instances, we can combine them together using a simple linear crossfade:

Simplified the sum is

X = (1-f(x)) * A + f(x) * B

Where X is the result of the crossfade, A is the low-latency output, B the high-latency
output, and f(x) is a ramp with x in the range [0, crossFadeLength].

The result can now but written to the files.

vocalsFile.Write (&ppfOutputSum[0], kBlockSize);
bassFile.Write (&ppfOutputSum[2], kBlockSize);
drumsFile.Write (&ppfOutputSum[4], kBlockSize);
otherFile.Write (&ppfOutputSum[6], kBlockSize);

We break the loop when the crossfade length is reached.

if (currentCrossFadeOutputBlock * kBlockSize >= crossFadeLength)
break;

Finally, we can continue processing the rest of the audio file only with the high-
latency instance in the same way as in StemsClMain.cpp.

1.3 Support
Support for the source code is - within the limits of the agreement - available from:

zplane.development
Grunewaldstr. 83
d-10823 berlin
Germany

fon: +49.30.854 09 15.0
fax: +49.30.854 09 15.5

@: info@zplane.de

2 Namespace Index

2.1 Namespace List
Here is a list of all namespaces with brief descriptions:

zplane 10

3 Class Index

3.1 Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

9

http://www.zplane.de
mailto:info@zplane.de

zplane::Stems 10

4 File Index

4.1 File List
Here is a list of all files with brief descriptions:

Stems/Stems.h
Interface of the Stems class 16

5 Namespace Documentation

5.1 zplane Namespace Reference
Classes

• class Stems

6 Class Documentation

6.1 zplane::Stems Class Reference
#include <Stems/Stems.h>

Public Types

• enum ErrorType {
noError, memError, notInitializedError, alreadyInitializedError,
invalidFunctionParamError, invalidFunctionCallError, unknownError, numError←↩

Types }
• enum VersionType {

major, minor, patch, revision,
numVersionTypes }

• enum LatencyMode { low, high }
• enum Instrument { vocals, bass, drums, other }

Public Member Functions

• Stems ()
• ∼Stems ()
• ErrorType initialize (int numChannels, float sampleRate, int maxOutputblocksize,

LatencyMode latencyMode)
• bool isInitialized ()
• ErrorType setOutputBlockSize (std::size t outputBlockSize)
• std::size t getFramesNeeded ()
• std::size t getMaxFramesNeeded ()
• ErrorType process (float const ∗const ∗const ppfInputBlock, std::size t num←↩

InputFrames, float ∗const ∗const ppfOutputBlock)

10

• ErrorType finishProcessing (float const ∗const ∗const ppfInputBlock, std::size←↩

t numInputFrames)
• ErrorType flushBuffer (float ∗const ∗const ppfOutputBlock, std::size t &num←↩

OutputFrames)
• ErrorType reset ()
• void setEnablePostProcessingOnInstrument (Instrument instrument, bool activate←↩

PostProcessing)
• bool getEnablePostProcessingOnInstrument (Instrument instrument)

Static Public Member Functions

• static const char ∗ getVersion ()
• static const char ∗ getBuildDate ()

6.1.1 Detailed Description

Definition at line 40 of file Stems.h.

6.1.2 Member Enumeration Documentation

ErrorType enum zplane::Stems::ErrorType

Enumerator

noError no error occurred
memError memory allocation failed

notInitializedError instance has not been initialized yet

alreadyInitializedError instance has already been initialized

invalidFunctionParamError one or more function parameters are not valid

invalidFunctionCallError function call is not allowed
unknownError unknown error occurred

numErrorTypes

Definition at line 43 of file Stems.h.

44 {
45 noError,
46 memError,
47 notInitializedError,
48 alreadyInitializedError,
49 invalidFunctionParamError,
50 invalidFunctionCallError,
51 unknownError,
52 numErrorTypes
53 };

Instrument enum zplane::Stems::Instrument

11

Enumerator

vocals
bass

drums
other

Definition at line 70 of file Stems.h.

71 {
72 vocals,
73 bass,
74 drums,
75 other
76 };

LatencyMode enum zplane::Stems::LatencyMode

Enumerator

low
high

Definition at line 64 of file Stems.h.

65 {
66 low,
67 high
68 };

VersionType enum zplane::Stems::VersionType

Enumerator

major

minor
patch

revision
numVersionTypes

Definition at line 55 of file Stems.h.

56 {
57 major,
58 minor,
59 patch,
60 revision,
61 numVersionTypes
62 };

12

6.1.3 Constructor & Destructor Documentation

Stems() zplane::Stems::Stems ()

∼Stems() zplane::Stems::∼Stems ()

6.1.4 Member Function Documentation

finishProcessing() ErrorType zplane::Stems::finishProcessing (

float const ∗const ∗const ppfInputBlock,

std::size t numInputFrames)

Signals the end of the processing loop. Input contains the remaining samples of the
input signal that should be processed. numInputFrames must be less than the length
reported by Stems::getFramesNeeded(), otherwise process can still be called. This
function must only be called once. After a call to this function no further calls to
Stems::process() are possible.

Parameters

ppfInputBlock : input sample buffer [channels][samples]

numInputFrames : the number of input frames

Returns

Stems::ErrorType : Returns an error flag

flushBuffer() ErrorType zplane::Stems::flushBuffer (

float ∗const ∗const ppfOutputBlock,

std::size t & numOutputFrames)

Gets all the remaining internal frames when no more input data is available and
writes them into the buffer ppfOutputBlock. Returns the number of written samples.
The use of this function is optional.

Parameters

ppfOutputBlock output sample buffer [channels][samples]

numOutputFrames the number of output frames

13

Returns

Stems::ErrorType : Returns an error flag

getBuildDate() static const char∗ zplane::Stems::getBuildDate () [static]

Returns the build date string.

getEnablePostProcessingOnInstrument() bool zplane::Stems::getEnablePost←↩

ProcessingOnInstrument (

Instrument instrument)

Gives back information on the current activation state of post-processing for a given
instrument.

Parameters

instrument Stems::Instrument, instrument to apply post-processing to

Returns

activatePostProcessing: bool, whether or not post-processing is activated for se-
lected track

getFramesNeeded() std::size t zplane::Stems::getFramesNeeded ()

Returns the required number of sample frames in order to obtain a full output block
during the next call to Stems::process()

Returns

size t : required number of sample frames

getMaxFramesNeeded() std::size t zplane::Stems::getMaxFramesNeeded ()

Returns the maximum required number of frames needed. This value is dependent
on the output block size.

Returns

size t : required number of sample frames

getVersion() static const char∗ zplane::Stems::getVersion () [static]

Returns major version, minor version, patch and build number of this Stems ver-
sion.

14

initialize() ErrorType zplane::Stems::initialize (

int numChannels,

float sampleRate,

int maxOutputblocksize,

LatencyMode latencyMode)

Initialize an instance of Stems. Must be called before using any of Stems function-
ality.

Parameters

numChannels Number of channels in the input signal.

sampleRate Sample rate of the input signal in Hertz.

maxOutputblocksize Blocksize of the output buffer in samples.

latencyMode Selects the latency mode of the separation model. Can be
either ”high” or ”low”. This parameter will affect the
output of getFramesNeeded.

Returns

Stems::ErrorType : Returns an error flag

isInitialized() bool zplane::Stems::isInitialized ()

process() ErrorType zplane::Stems::process (

float const ∗const ∗const ppfInputBlock,

std::size t numInputFrames,

float ∗const ∗const ppfOutputBlock)

Does the actual stems separation processing if the number of frames provided is
as retrieved by Stems::getFramesNeeded(). Input needs to be stereo. Output is multi-
channel stereo with the stems stacked in channels. With vocals, bass, drums and other,
output has 8 channels.

Parameters

ppfInputBlock : input sample buffer [channels][samples]

numInputFrames : the number of input frames

ppfOutputBlock : output sample buffer [channels][samples]

Returns

Stems::ErrorType : Returns an error flag

reset() ErrorType zplane::Stems::reset ()

15

Clears the internal buffers. Call this method to avoid the remaining samples in the
process buffer being audible when you e.g. stop playback and start it again at different
time position. Other parameters are not reset.

Returns

Stems::ErrorType : Returns an error flag

setEnablePostProcessingOnInstrument() void zplane::Stems::setEnablePost←↩

ProcessingOnInstrument (

Instrument instrument,

bool activatePostProcessing)

Applies post-processing on selected instrument. The post-processing here reduces
interferences from other instruments and improves separation for the selected instru-
ment. Post-processing can be activated or turned off during processing. Post-processing
can also be activated for different instruments.

Parameters

instrument Stems::Instrument, instrument to apply post-processing
to

activatePostProcessing bool, turns the post-processing on or off for the selected
instrument.

setOutputBlockSize() ErrorType zplane::Stems::setOutputBlockSize (

std::size t outputBlockSize)

Sets the output block size.

Parameters

outputBlockSize : the new output blocksize

Returns

Stems::ErrorType : Returns an error flag

The documentation for this class was generated from the following file:

• Stems/Stems.h

7 File Documentation

7.1 /work/project/docs/docugen.txt File Reference

7.2 Stems/Stems.h File Reference
interface of the Stems class.

16

#include <vector>
Include dependency graph for Stems.h:

Stems/Stems.h

vector

Classes

• class zplane::Stems

Namespaces

• zplane

7.2.1 Detailed Description

interface of the Stems class.
:

17

Index
/work/project/docs/docugen.txt, 16
∼Stems

zplane::Stems, 13

ErrorType
zplane::Stems, 11

finishProcessing
zplane::Stems, 13

flushBuffer
zplane::Stems, 13

getBuildDate
zplane::Stems, 14

getEnablePostProcessingOnInstrument
zplane::Stems, 14

getFramesNeeded
zplane::Stems, 14

getMaxFramesNeeded
zplane::Stems, 14

getVersion
zplane::Stems, 14

initialize
zplane::Stems, 14

Instrument
zplane::Stems, 11

isInitialized
zplane::Stems, 15

LatencyMode
zplane::Stems, 12

process
zplane::Stems, 15

reset
zplane::Stems, 15

setEnablePostProcessingOnInstrument
zplane::Stems, 16

setOutputBlockSize
zplane::Stems, 16

Stems
zplane::Stems, 13

Stems/Stems.h, 16

VersionType

zplane::Stems, 12

zplane, 10
zplane::Stems, 10
∼Stems, 13
ErrorType, 11
finishProcessing, 13
flushBuffer, 13
getBuildDate, 14
getEnablePostProcessingOnInstrument,

14
getFramesNeeded, 14
getMaxFramesNeeded, 14
getVersion, 14
initialize, 14
Instrument, 11
isInitialized, 15
LatencyMode, 12
process, 15
reset, 15
setEnablePostProcessingOnInstrument,

16
setOutputBlockSize, 16
Stems, 13
VersionType, 12

18

	STEMS EFFICIENT Documentation
	Introduction
	API Documentation
	Latency Modes
	Memory Allocation
	Naming Conventions
	Instance Handling Functions
	Process Functions
	Parameter Retrieving and Setting Functions
	C++ Usage example demonstrating the functionalities of a single instance
	C++ Usage example demonstrating the combined use of low and high latency instances

	Support

	Namespace Index
	Namespace List

	Class Index
	Class List

	File Index
	File List

	Namespace Documentation
	zplane Namespace Reference

	Class Documentation
	zplane::Stems Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	File Documentation
	/work/project/docs/docugen.txt File Reference
	Stems/Stems.h File Reference
	Detailed Description

	Index

