
DRUMS 1.0.0

by zplane.development

(c) 2025 zplane.development GmbH & Co. KG

April 22, 2025

Contents
1 DRUMS Documentation 2

1.1 Introduction . 2
1.2 API Documentation . 2

1.2.1 Memory Allocation . 2
1.2.2 Naming Conventions . 2
1.2.3 Instance Handling Functions 3
1.2.4 Process Functions . 3
1.2.5 Retrieving Parameters and Setting Functions 4

1.3 Command Line Usage Example . 4
1.4 Support . 5

2 Namespace Index 5
2.1 Namespace List . 5

3 Class Index 5
3.1 Class List . 5

4 File Index 5
4.1 File List . 5

5 Namespace Documentation 5
5.1 zplane Namespace Reference . 5

6 Class Documentation 6
6.1 zplane::Drums::DrumResultElement Struct Reference 6

6.1.1 Detailed Description . 6
6.1.2 Member Data Documentation 6

6.2 zplane::Drums Class Reference . 6
6.2.1 Detailed Description . 7
6.2.2 Member Enumeration Documentation 7
6.2.3 Constructor & Destructor Documentation 8
6.2.4 Member Function Documentation 8

7 File Documentation 10
7.1 /work/project/docs/docugen.txt File Reference 10
7.2 Drums/Drums.h File Reference . 10

Index 12

1

1 DRUMS Documentation

1.1 Introduction
Welcome to zplane DRUMS, an SDK that analyzes audio recordings of drums and out-
puts a 9-class transcription of the signal, including velocities. DRUMS is an offline
process, meaning it requires the complete audio file as input and outputs the result
only after the file has been processed in its entirety. It is not an online or real-time
drum transcription system. The algorithm is able to process audio files between 6 and
7 times realtime on an Apple M3 Pro processor. The mimimum sample rate is 11025
Hz and there is no restriction on the number of input channels. In order to maximize
transcription quality, we offer the following guidelines when working with DRUMS:

• Isolated drums, i.e., no tonal instruments in the mix.

• Dry recording, with as little influence from room acoustics or FX processing as
possible.

• Standard Western drum kit; DRUMS detects hits from each of the following
classes: kick, snare, tom 1, tom 2, tom 3, open hi-hat, closed hi-hat, crash,
and ride. Additional drum kit elements (such as cowbell) may be ignored or
mis-classified, depending on their characteristics. While it is possible to analyze
(electronic) drum machine recordings, this is currently out of scope and your
results may vary.

This guide contains the information you need to get started using DRUMS: it pro-
vides an API description and C++ usage examples following a simple command-line
application found in DrumsClMain.cpp. At the end, you will also find detailed docu-
mentation of the DRUMS∗ interface, describing all its methods and structs.

1.2 API Documentation
The analysis consists of two stages: a pre-processing stage in which the audio is ana-
lyzed, and a processing stage that carries out the actual drum transcription.
The pre-processing stage is based on the push principle: successive blocks of input au-
dio frames are fed into the Drums::preProcess() function. Once the audio file has been
loaded entirely, the pre-processing stage is ended by calling Drums::finishPreProcess().
After pre-processing is complete, Drums::process() is called in order to obtain the tran-
scription results.

1.2.1 Memory Allocation

The DRUMS SDK does not allocate any buffers handled by the calling application.
The input buffer as well as the result objects have to be allocated/created by the calling
application.

1.2.2 Naming Conventions

When talking about frames, the number of audio samples per channel is meant. For
example, 512 stereo frames correspond to 1024 float values (samples). An audio block
is a sequence of consecutive frames with a given length.

2

1.2.3 Instance Handling Functions

• ErrorType Drums::initialize (float sampleRate, std::size t numChannels);

– Initalizes a DRUMS instance.

• ErrorType Drums::reset() ;

– Resets all internal variables and buffers to the default state. The return
value indicates whether an error occurred or not.

1.2.4 Process Functions

• ErrorType preProcess (float const∗ const∗ const inputBuffer, int number←↩

OfFrames)

– Pre-processing function. ppfInputBuffer is an array of pointers to the audio
data. inputBuffer[0] is a pointer to the data of the first channel, ppfInput←↩

Buffer[1] points to the data of the second channel, etc. numberOfFrames
specifies the number of frames, i.e., the number of samples in each channel.
This function can repeatedly be called with successive chunks of audio until
the entire signal has been pushed into DRUMS. This function will return an
error if it is called after Drums::finishPreProcess() has been called.

• ErrorType Drums::finishPreProcess (bool flushBuffers)

– This function has to be called after all audio frames have been pushed
into DRUMS by Drums::preProcess(). It should be called exactly once and
will return an error if called before Drums::preProcess() or after Drums←↩

::process(). Should you plan to add further audio to the buffer via pre←↩

Process(...), set the flushBuffers flag to false.

• ErrorType Drums::process (std::vector<DrumResultElement>& result)

– Performs the actual drum transcription. This function can only be called af-
ter Drums::process() has been called. Returns a vector of drum kit element
classes, indexed as shown in the table below. Note that in DrumsClMain.←↩

cpp we provide a default mapping and helper code to write MIDI files, but
you are free to map each class to the MIDI note of your choice.

Table 1: Drum Kit Element Mapping Overview

Class Index Drum Kit Element Suggested MIDI Note
0 Kick 36
1 Snare 38
2 Tom 1 50
3 Tom 2 47
4 Tom 3 43
5 Open Hi-Hat 46
6 Closed Hi-Hat 42
7 Crash 49
8 Ride 51

3

1.2.5 Retrieving Parameters and Setting Functions

• std::size t Drums::getFramesNeeded();

– Returns the required number of frames in order to process a full block dur-
ing the next call to Drums::process()

• std::size t Drums::getMaxFramesNeeded();

– Returns the maximum required number of frames.

1.3 Command Line Usage Example
The command line example can be executed by the following command

DrumsCl -i <inputFileWAV> -r <resultFileText> -m <resultFileMIDI>

The complete code can be found in the example source file DrumsClMain.cpp.
In the first step, we create an instance of the DRUMS class and initialize:

zplane::Drums drums;

error = drums.initialize(inputFile.GetSampleRate(), inputFile.GetNumOfChannels());

We then read chunks of data from our input file,

while (readNextFrame)

And push each chunk into our preProcess() function.

After the entire file has been read and pushed into DRUMS, we call finishPre←↩

Process() once to terminate the preprocessing stage

We then call the process function:

We can access the individual elements of the resulting drum transcription and print
them on the command line:

4

1.4 Support
Support for the source code is - within the limits of the agreement - available from:

zplane.development
Goerzallee 311
d-14167 berlin
Germany

fon: +49.30.854 09 15.0
fax: +49.30.854 09 15.5

@: info@zplane.de

2 Namespace Index

2.1 Namespace List
Here is a list of all namespaces with brief descriptions:

zplane 5

3 Class Index

3.1 Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

zplane::Drums::DrumResultElement 6

zplane::Drums 6

4 File Index

4.1 File List
Here is a list of all files with brief descriptions:

Drums/Drums.h 10

5 Namespace Documentation

5.1 zplane Namespace Reference
Classes

• class Drums

5

http://www.zplane.de
mailto:info@zplane.de

6 Class Documentation

6.1 zplane::Drums::DrumResultElement Struct Reference
#include <Drums/Drums.h>

Public Attributes

• float startTimeInS
• float endTimeInS
• std::size t classIndex
• std::size t velocity

6.1.1 Detailed Description

Struct representing drum hit events in a result
Definition at line 34 of file Drums.h.

6.1.2 Member Data Documentation

classIndex std::size t zplane::Drums::DrumResultElement::classIndex

Definition at line 38 of file Drums.h.

endTimeInS float zplane::Drums::DrumResultElement::endTimeInS

Definition at line 37 of file Drums.h.

startTimeInS float zplane::Drums::DrumResultElement::startTimeInS

Definition at line 36 of file Drums.h.

velocity std::size t zplane::Drums::DrumResultElement::velocity

Definition at line 39 of file Drums.h.
The documentation for this struct was generated from the following file:

• Drums/Drums.h

6.2 zplane::Drums Class Reference
#include <Drums/Drums.h>

Classes

• struct DrumResultElement

6

Public Types

• enum ErrorType {
noError, memError, notInitializedError, alreadyInitializedError,
invalidFunctionParamError, invalidFunctionCallError, canNotBeCalledAtThis←↩

StageError, preProcessNeverCalledError,
unfinishedPreProcessingError, unknownError, numErrorTypes }

Public Member Functions

• Drums ()
• ∼Drums ()
• ErrorType initialize (float sampleRate, std::size t numChannels)
• ErrorType preProcess (float const ∗const ∗const inputBuffer, int numberOf←↩

Frames)
• ErrorType finishPreProcess ()
• ErrorType process (std::vector< DrumResultElement > &result)
• ErrorType reset ()
• std::size t getFramesNeeded ()
• std::size t getMaxFramesNeeded ()
• bool isInitialized ()

Static Public Member Functions

• static const char ∗ getVersion ()
• static const char ∗ getBuildDate ()

6.2.1 Detailed Description

Definition at line 6 of file Drums.h.

6.2.2 Member Enumeration Documentation

ErrorType enum zplane::Drums::ErrorType

Enumerator

noError no error occurred
memError memory allocation failed

notInitializedError instance has not been initialized yet

alreadyInitializedError instance has already been initialized

invalidFunctionParamError one or more function parameters are not
valid

invalidFunctionCallError function call is not allowed

7

Enumerator

canNotBeCalledAtThisStageError further audio can't be added via preProcess if
finishPreProcessing was called with
flushBuffers=true or a data chunk was set,
finishPreProcessing can't be called if a data
chunk was set

preProcessNeverCalledError finishPreProcessing() can only be called if
preProcess has at least been called once

unfinishedPreProcessingError finishPreProcessing() has to be called before
process() or setKnownDownbeat()

unknownError unknown error occurred
numErrorTypes

Definition at line 9 of file Drums.h.

10 {
11 noError,
12 memError,
13 notInitializedError,
14 alreadyInitializedError,
15 invalidFunctionParamError,
16 invalidFunctionCallError,
17 canNotBeCalledAtThisStageError,
18 preProcessNeverCalledError,
19 unfinishedPreProcessingError,
20 unknownError,
21 numErrorTypes
22 };

6.2.3 Constructor & Destructor Documentation

Drums() zplane::Drums::Drums ()

∼Drums() zplane::Drums::∼Drums ()

6.2.4 Member Function Documentation

finishPreProcess() ErrorType zplane::Drums::finishPreProcess ()

Terminates the preprocessing stage.
Needs to be called once before process() can be called.

Returns

Drums::ErrorType : Returns an error code.

8

getBuildDate() static const char∗ zplane::Drums::getBuildDate () [static]

Returns the build date string.

getFramesNeeded() std::size t zplane::Drums::getFramesNeeded ()

Returns the required number of sample frames in order to obtain a full output block
during the next call to Drums::process()

Returns

size t : required number of sample frames

getMaxFramesNeeded() std::size t zplane::Drums::getMaxFramesNeeded ()

Returns the maximum required number of frames needed. This value is dependent
on the output block size.

Returns

size t : required number of sample frames

getVersion() static const char∗ zplane::Drums::getVersion () [static]

Returns major version, minor version, patch and build number of this Drums ver-
sion.

initialize() ErrorType zplane::Drums::initialize (

float sampleRate,

std::size t numChannels)

Initialize an instance of Drums. Must be called before using any of Drums func-
tionality.

Parameters

sampleRate Sample rate of the input signal in Hertz.

numChannels Number of channels in the input signal.

Returns

Drums::ErrorType : Returns an error code.

isInitialized() bool zplane::Drums::isInitialized ()

preProcess() ErrorType zplane::Drums::preProcess (

float const ∗const ∗const inputBuffer,

int numberOfFrames)

9

Preprocesses a block of audio.
This function can be called multiple times in order to provide successive chunks of

the input audio signal.

Parameters

inputBuffer pointer to the input data chunk. inputBuffer[i] points to the
i-th audio channel.

numberOfFrames The number of audio samples in each audio channel of the
provided input data chunk.

Returns

Drums::ErrorType : Returns an error code.

process() ErrorType zplane::Drums::process (

std::vector< DrumResultElement > & result)

Perform Drums estimation. This is where the major chunk of computational load
happens.

Parameters

result this array contains the transcription result. The order of the elements is
determined by the struct element ”startTimeInS”.

Returns

Drums::ErrorType : Returns an error code.

reset() ErrorType zplane::Drums::reset ()

Resets the state of the SDK to the same state as directly after calling initialize()

Returns

Drums::ErrorType : Returns an error code.

The documentation for this class was generated from the following file:

• Drums/Drums.h

7 File Documentation

7.1 /work/project/docs/docugen.txt File Reference

7.2 Drums/Drums.h File Reference
#include <vector>

10

Include dependency graph for Drums.h:

Drums/Drums.h

vector

Classes

• class zplane::Drums
• struct zplane::Drums::DrumResultElement

Namespaces

• zplane

11

Index
/work/project/docs/docugen.txt, 10
∼Drums

zplane::Drums, 8

classIndex
zplane::Drums::DrumResultElement,

6

Drums
zplane::Drums, 8

Drums/Drums.h, 10

endTimeInS
zplane::Drums::DrumResultElement,

6
ErrorType

zplane::Drums, 7

finishPreProcess
zplane::Drums, 8

getBuildDate
zplane::Drums, 8

getFramesNeeded
zplane::Drums, 9

getMaxFramesNeeded
zplane::Drums, 9

getVersion
zplane::Drums, 9

initialize
zplane::Drums, 9

isInitialized
zplane::Drums, 9

preProcess
zplane::Drums, 9

process
zplane::Drums, 10

reset
zplane::Drums, 10

startTimeInS
zplane::Drums::DrumResultElement,

6

velocity

zplane::Drums::DrumResultElement,
6

zplane, 5
zplane::Drums, 6
∼Drums, 8
Drums, 8
ErrorType, 7
finishPreProcess, 8
getBuildDate, 8
getFramesNeeded, 9
getMaxFramesNeeded, 9
getVersion, 9
initialize, 9
isInitialized, 9
preProcess, 9
process, 10
reset, 10

zplane::Drums::DrumResultElement, 6
classIndex, 6
endTimeInS, 6
startTimeInS, 6
velocity, 6

12

	DRUMS Documentation
	Introduction
	API Documentation
	Memory Allocation
	Naming Conventions
	Instance Handling Functions
	Process Functions
	Retrieving Parameters and Setting Functions

	Command Line Usage Example
	Support

	Namespace Index
	Namespace List

	Class Index
	Class List

	File Index
	File List

	Namespace Documentation
	zplane Namespace Reference

	Class Documentation
	zplane::Drums::DrumResultElement Struct Reference
	Detailed Description
	Member Data Documentation

	zplane::Drums Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	File Documentation
	/work/project/docs/docugen.txt File Reference
	Drums/Drums.h File Reference

	Index

