
4TUNE 1.0.2

by zplane.development

(c) 2018 zplane.development GmbH & Co. KG

February 9, 2018

Contents
1 4Tune Documentation 2

1.1 Introduction . 2
1.2 API Documentation . 3

1.2.1 Naming Conventions . 3
1.2.2 Instance Control Functions 3
1.2.3 Parameter Setting Functions 3
1.2.4 Process Function . 4
1.2.5 Parameter and Result Retrieving Functions 4
1.2.6 Usage Example . 4
1.2.7 Error Codes . 6

1.3 SDK Content . 6
1.3.1 Folder Structure . 6
1.3.2 Project Structure . 7

1.4 Third Party Libraries . 7
1.5 Support . 7

2 Class Index 7
2.1 Class List . 8

3 File Index 8
3.1 File List . 8

4 Class Documentation 8
4.1 C4TuneCallbackBase Class Reference 8

4.1.1 Detailed Description . 8
4.1.2 Constructor & Destructor Documentation 8
4.1.3 Member Function Documentation 9

4.2 C4TuneIf Class Reference . 9
4.2.1 Detailed Description . 10
4.2.2 Member Enumeration Documentation 10
4.2.3 Member Function Documentation 12

5 File Documentation 15
5.1 4TuneAPI.h File Reference . 15
5.2 docugen.txt File Reference . 15

5.2.1 Detailed Description . 15

1 4Tune Documentation 2

1 4Tune Documentation

1.1 Introduction

The 4Tune SDK is designed specifically for karaoke apps especially on mobile devices
(iOS). It features a low latency pitch tracking using the same technology as used in the
elastiqueSOLOIST combined with an easy to use interface.

The concept of the SDK is to provide the developer of a karaoke (or similar) appli-
cation easy integration of the signal processing part of the application without much
knowledge of the signal processing underneath.

In order to operate the 4Tune SDK only the karoake backing track and some knowledge
about the melody to be sung is needed. The developer also needs to know how to
operate the audio device I/O. Optimally the 4Tune SDK is operated within the audio
callback in order to keep input and output in sync. The following figure shows the basic
operation of the SDK.

Figure 1: 4Tune operation scheme

While streaming the output (i.d. the karaoke playback) to the speaker one needs to
capture the singers input and pass it to the 4Tune API. For each new note sung or each
silent part one needs to inform the API about the note or the fact that nothing is sung
at that time. In order to avoid octave errors either on the pitch tracking or the karaoke
singer side all pitches are mapped to one octave. During and at the end of each note one
can query the SDK for the current average deviation of the sung pitch from the desired
pitch. This way the application can give feedback about the current performance of
the singer for each note. Furthermore there are some service functions for setting the
detection tolerances and retrieving the length of the actually sung note with respect to

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

1.2 API Documentation 3

the desired length.

The 4Tune SDK is available for Win32/64, Mac OSX, Linux32/64 and iOS.

The project contains the required libraries for operating system élastique was licensed
for with the appropriate header files.

The structure of this document is as following: First the API of the élastique library
is described. The API documentation contains naming conventions and function de-
scriptions of the C++-API. The following usage examples (available as source code
for compiling the test application) give a clear example on how to use the API in a
real world application. Afterwards, a short description of the usage of the compiled
example application is given.

1.2 API Documentation

The interface of the SDK is based on the push principle: succeeding blocks of input
audio frames are pushed into the process function. Internal memory cannot be accessed
from outside, while external memory (e.g. the audio buffer) will not be altered during
API function calls.

The SDK is capable of running multiple instances at the same time, but the API is not
threadsafe.

1.2.1 Naming Conventions

When talking about frames, the number of audio samples per channel is meant. I.e.
512 stereo frames correspond to 1024 float values (samples). If the sample size is 32bit
float, one sample has a memory usage of 4 byte.

1.2.2 Instance Control Functions

The following functions have to be called when using the 4Tune library:

• C4TuneIf::CreateInstance(.)
Creates a new instance of the 4Tune SDK. Besides the reference pointer, the sam-
plerate and the number of channels, optionally a callback class pointer derived
from C4TuneCallbackBase may be passed.

• C4TuneIf::DestroyInstance(.)
Destroys an existing instance of the 4Tune SDK.

1.2.3 Parameter Setting Functions

• C4TuneIf::SetParamValue(.)
Use this method to set internal parameters of the SDK. Please refer to C4Tune-
If::Param_t for parameters available.

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

1.2 API Documentation 4

• C4TuneIf::SetNewNoteOn(.)
This method has to be called each time a new note event starts. This is also true
for no note events - in this case call the method with the C4TuneIf::kNoNote set.

1.2.4 Process Function

• C4TuneIf::Process ()
This function does the actual processing of the current input audio stream. Please
note that this function is not threadsafe - so no other interface methods may be
called druing the processing.

1.2.5 Parameter and Result Retrieving Functions

• C4TuneIf::GetParamValue(.)
Use this method to get the value of the internal parameters of the SDK. Please
refer to C4TuneIf::Param_t for parameters available.

• C4TuneIf::GetCurrentAvgPitchOffsetFromLastNoteOn()
This returns the the current average offset of the sung note from the desired note
set by C4TuneIf::SetNewNoteOn(.). By default there is a tolerance of 50 cent
around the pitch, so everything within that range is mapped to the perfect pitch.
This may be changed by using C4TuneIf::SetParamValue(.).

• C4TuneIf::GetPercentageOfSungNoteFromLastNoteOn()
This returns the the current percentage of the time of detected pitches versus the
time from the last note on set by C4TuneIf::SetNewNoteOn(.).

1.2.5.1 Utilitary Functions

• C4TuneIf::ResetInstance()
Resets the instance to its initial state. May be called instead of destroying the
current and creating a new instance.

1.2.6 Usage Example

The complete code can be found in the example source file 4TuneClMain.cpp. For
audio file IO, an internal (C++) library is used.

In this example we assume to have an audio file only containing one pitch (in this case
that is a C).

In the first step, a pointer to the 4Tune instance has to be declared:

C4TuneIf::CreateInstance (pInstanceHandle, pCInputFile->GetSampleRate(),
pCInputFile->GetNumOfChannels());

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

1.2 API Documentation 5

The number of channels and the samplerate must be known here. Additonally you have
the possibility to pass in a pointer to a callback class derived from C4TuneCallback-
Base. By overriding the C4TuneCallbackBase::newPitchResultCallback() method the
callback will be called each time a new pitch is detected.

After instance creation the expected note has to be set

pInstanceHandle->SetNewNoteOn(C4TuneIf::kC);

In a real-world-application this should be synchronized to the playback audio stream
and a midi file (or similar) containing the expected melody. In that case the prcossing
within the following while loop

while(bReadNextFrame)

will be done in the audio I/O callback.

Now, we do the processing of the inut audio steam:

pInstanceHandle->Process (apfFloatData, iNumFramesRead);

The audio data is passed in as a double pointer of which the first pointer represents
the channels while the second contains the actual audio samples for each channel: p-
Ptr[channels][samples].

After the processing we retrieve the results for the desired note

cout << endl<< endl << "Result avg offset:" << pInstanceHandle->
GetCurrentAvgPitchOffsetFromLastNoteOn() << endl << endl;

for the pitch deviation, and

cout << endl<< endl << "Result percentage of sung note:" << pInstanceHandle
->GetPercentageOfSungNoteFromLastNoteOn() << endl << endl;

for the percentage of time that the note was actually sung by the singer.

And finally, when finished, the instance can be destroyed:

C4TuneIf::DestroyInstance (pInstanceHandle);

The above code snippets demonstrated the basic functionality of the 4Tune library. -
Most of the additional functions can be used similar to the given code examples. The
exact functionality of the functions is described above.

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

1.3 SDK Content 6

1.2.7 Error Codes

where are the errors defined etc.. Below is a short description of possible error codes:

• C4TuneIf::kNoError
no error occurred

• C4TuneIf::kMemError
some internal memory allocation failed

• C4TuneIf::kInvalidFunctionParamError
one or more function parameters are not valid

• C4TuneIf::kNotInitializedError
instance has not been initialized yet

• C4TuneIf::kUnknownError
unknown error occurred

1.3 SDK Content

1.3.1 Folder Structure

1.3.1.1 Documentation

This documentation and all other documentation can be found in the directory ./doc.

1.3.1.2 Project Files

The MS VisualC++-Solution (.sln) and all single Projectfiles (.vcproj) can be found in
the directory ./build and its subfolders, where the subfolders names correspond to the
project names.

1.3.1.3 Source Files

All source files are in the directory ./src and its subfolders, where the subfolder names
equally correspond to the project names.

1.3.1.4 Include Files

If include files are project-intern, they are in the source directory ./src of the project it-
self. If include files are to be included by other projects, they can be found in ./src/incl.
The main interface header of the SDK can be found in ./inc.

1.3.1.5 Resource Files

The resource files, if present, can be found in the subdirectory ./res of the correspond-
ing build-directory.

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

1.4 Third Party Libraries 7

1.3.1.6 Library Files

The directory ./lib is for used and built libraries.

1.3.1.7 Binary Files

The final executable (as well as the distributable Dynamic Link Libraries if contained
in the project) can be found in the directory ./bin/release. In debug-builds, the binary
files are in the subfolder ./bin/Debug.

1.3.2 Project Structure

The project structure is as following:

• lib4Tune: The actual 4Tune-library. The project output is a Static Library (Lib).

• 4TuneCl: Application using the SDK. Consists of the following files:

– 4TuneClMain.cpp: example code showing how to integrate the SDK.

The project output is an executable binary (EXE).

• libzplAudioFile: internal library for audio IO. The project output is a Static
Library (Lib).

1.4 Third Party Libraries

Add information about the libraries under different licenses, add information about
these licenses, add information about patent licenses (fees?).

1.5 Support

Support for the source code is - within the limits of the agreement - available from:

zplane.development

grunewaldstr.83

d-10823 berlin

germany

fon: +49.30.854 09 15.0

fax: +49.30.854 09 15.5

@: info@zplane.de

2 Class Index

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

http://www.zplane.de
mailto:info@zplane.de

2.1 Class List 8

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

C4TuneCallbackBase 8

C4TuneIf 9

3 File Index

3.1 File List

Here is a list of all files with brief descriptions:

4TuneAPI.h 15

4 Class Documentation

4.1 C4TuneCallbackBase Class Reference

#include <4TuneAPI.h>

Public Member Functions

• C4TuneCallbackBase ()
• virtual ∼C4TuneCallbackBase ()
• virtual void newPitchResultCallback (float fNewPitchInSemitones, double d-

TimeStampFromStartOfProcessingInSec, double dTimeStampFromStartofCurrent-
NoteInSec)=0

method that has to be overloaded in a derived class which implements the desired
behavior

4.1.1 Detailed Description

pure virtual callback class for getting each current pitch result. This class has to be
derived and passed to the API. This is optional.

Definition at line 49 of file 4TuneAPI.h.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 C4TuneCallbackBase::C4TuneCallbackBase ()

4.1.2.2 virtual C4TuneCallbackBase::∼C4TuneCallbackBase () [virtual]

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 9

4.1.3 Member Function Documentation

4.1.3.1 virtual void C4TuneCallbackBase::newPitchResultCallback (float
fNewPitchInSemitones, double dTimeStampFromStartOfProcessingInSec,
double dTimeStampFromStartofCurrentNoteInSec) [pure virtual]

method that has to be overloaded in a derived class which implements the desired
behavior

Parameters
fNewPitch-

InSemitones
the current detected pitch

dTime-
StampFrom-

StartOf-
Processing-

InSec

the current timestamp in seconds calculated from the beginning of pro-
cessing or after a reset

dTime-
StampFrom-

Startof-
Current-

NoteInSec

the current timestamp in seconds calculated from the beginning of the
current note onset

The documentation for this class was generated from the following file:

• 4TuneAPI.h

4.2 C4TuneIf Class Reference

#include <4TuneAPI.h>

Public Types

• enum Notes_t { kNoNote = -1, kC, kCsharp, kD, kDsharp, kE, kF, kFsharp,
kG, kGsharp, kA, kAsharp, kB, kNumNotes }

< all possible notes of the scale. Dflat is equal to Csharp
• enum Param_t { kTuningFreqInHz = 0, kToleranceInSemitones, kIgnoreTime-

AfterNoteOnInSec, kNumParams }
< set of user adjustable parameters

• enum Error_t { kNoError, kMemError, kInvalidFunctionParamError, kNotInitialized-
Error, kUnknownError, kNumErrors }

• enum Version_t { kMajor, kMinor, kPatch, kBuild, kNumVersionInts }

Public Member Functions

• virtual Error_t ResetInstance ()=0

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 10

resets the instance, should be called when a new song is to be processed
• virtual Error_t GetParamValue (Param_t iParamIdx, float &fValue)=0

returns the current value of a specific parameter (see CSOLOIST4TuneIf::Param_t)
• virtual Error_t SetParamValue (Param_t iParamIdx, float fValue)=0

sets the value for a specific parameter (see CSOLOIST4TuneIf::Param_t)
• virtual Error_t SetNewNoteOn (Notes_t iNoteIdx)=0

set a new note on for each note and pause (kNoNote) - this re-triggers averaging of
the current offset result needs to be called before the next Process call after a note
change

• virtual float GetCurrentAvgPitchOffsetFromLastNoteOn ()=0
returns the current averaged difference between the audio input and the desired note
(SetNewNoteOn) - averaging starts with each SetNewNoteOn()

• virtual float GetPercentageOfSungNoteFromLastNoteOn ()=0
returns the percentage of the actually sung note (the IgnoreTimeAfterNoteOnInSec is
also ignored). This means if the singer sings only half of the note this will return 0.5
== 50%

• virtual Error_t Process (float ∗∗ppfInputBufferSeparate, int iNumberOfFrames)=0

does the actual audio processing aka pitch tracking

Static Public Member Functions

• static const int GetVersion (const Version_t eVersionIdx)
returns current version of the SDK

• static const char ∗ GetBuildDate ()
returns the build date as a char string

• static Error_t CreateInstance (C4TuneIf ∗&pCSOLOIST4Tune, float fSample-
Rate, int iNumberOfChannels, int iMaxInputBufferSize=8192, C4TuneCallback-
Base ∗pCallbackClassPtr=NULL)

creates an instance of the CSOLOIST4TuneIf SDK
• static Error_t DestroyInstance (C4TuneIf ∗&pCSOLOIST4Tune)

destroys an instance of CSOLOIST4TuneIf SDK

4.2.1 Detailed Description

Definition at line 68 of file 4TuneAPI.h.

4.2.2 Member Enumeration Documentation

4.2.2.1 enum C4TuneIf::Error_t

Enumerator:

kNoError no error occurred

kMemError memory allocation failed

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 11

kInvalidFunctionParamError one or more function parameters are not valid

kNotInitializedError instance has not been initialized yet

kUnknownError unknown error occurred

kNumErrors

Definition at line 102 of file 4TuneAPI.h.

4.2.2.2 enum C4TuneIf::Notes_t

< all possible notes of the scale. Dflat is equal to Csharp

Enumerator:

kNoNote
kC
kCsharp
kD
kDsharp
kE
kF
kFsharp
kG
kGsharp
kA
kAsharp
kB
kNumNotes

Definition at line 72 of file 4TuneAPI.h.

4.2.2.3 enum C4TuneIf::Param_t

< set of user adjustable parameters

Enumerator:

kTuningFreqInHz optionally set the tuning frequency in Hz (default = 440 Hz)

kToleranceInSemitones optionally set the averaging +/- tolerance in semitones
(default = 0.5 semitones = 50 cent), all pitches detected within this range
around the target pitch will be mapped to the target pitch

kIgnoreTimeAfterNoteOnInSec optionally set the ignore time after a note onset
in seconds (default = 0.010 sec) < all pitches detected within that time span
after a new note-on are ignored

kNumParams

Definition at line 91 of file 4TuneAPI.h.

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 12

4.2.2.4 enum C4TuneIf::Version_t

Enumerator:

kMajor
kMinor
kPatch
kBuild
kNumVersionInts

Definition at line 113 of file 4TuneAPI.h.

4.2.3 Member Function Documentation

4.2.3.1 static Error_t C4TuneIf::CreateInstance (C4TuneIf ∗& pCSOLOIST4Tune,
float fSampleRate, int iNumberOfChannels, int iMaxInputBufferSize = 8192,
C4TuneCallbackBase ∗ pCallbackClassPtr = NULL) [static]

creates an instance of the CSOLOIST4TuneIf SDK

Parameters
pCSOLOIS-

T4Tune
the handle to the newly created instance

fSampleRate the desired samplerate
iNumberOf-

Channels
the number of audio channels to be processed

iMaxInput-
BufferSize

defines the maximum input buffersize used in a process call

pCallback-
ClassPtr

optional instance pointer to derived class instance of CSOLOIST4-
TuneCallbackBase

Returns

an error code of type CSOLOIST4TuneIf::Error_t

4.2.3.2 static Error_t C4TuneIf::DestroyInstance (C4TuneIf ∗&
pCSOLOIST4Tune) [static]

destroys an instance of CSOLOIST4TuneIf SDK

Parameters
pCSOLOIS-

T4Tune
a pointer to a previously created instance of CSOLOIST4TuneIf

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 13

Returns

an error code of type CSOLOIST4TuneIf::Error_t

4.2.3.3 static const char∗ C4TuneIf::GetBuildDate () [static]

returns the build date as a char string

Returns

build date as a char string

4.2.3.4 virtual float C4TuneIf::GetCurrentAvgPitchOffsetFromLastNoteOn ()
[pure virtual]

returns the current averaged difference between the audio input and the desired note
(SetNewNoteOn) - averaging starts with each SetNewNoteOn()

Returns

current averaged difference

4.2.3.5 virtual Error_t C4TuneIf::GetParamValue (Param_t iParamIdx, float &
fValue) [pure virtual]

returns the current value of a specific parameter (see CSOLOIST4TuneIf::Param_t)

Parameters
iParamIdx index of the desired parameter

fValue returns the current value

Returns

4.2.3.6 virtual float C4TuneIf::GetPercentageOfSungNoteFromLastNoteOn ()
[pure virtual]

returns the percentage of the actually sung note (the IgnoreTimeAfterNoteOnInSec is
also ignored). This means if the singer sings only half of the note this will return 0.5
== 50%

Returns

the percentage

4.2.3.7 static const int C4TuneIf::GetVersion (const Version_t eVersionIdx)
[static]

returns current version of the SDK

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

4.2 C4TuneIf Class Reference 14

Parameters
eVersionIdx depending on the CSOLOIST4TuneIf::Version_t indes this defines

which part of the version number is returned

Returns

version number

4.2.3.8 virtual Error_t C4TuneIf::Process (float ∗∗ ppfInputBufferSeparate, int
iNumberOfFrames) [pure virtual]

does the actual audio processing aka pitch tracking

Parameters
ppfInput-

Buffer-
Separate

a double pointer to the input audio data usually coming from the audio
callback. It has the form [channels][sampleframes]

iNumberOf-
Frames

the number of sample frames passed in

Returns

an error code of type CSOLOIST4TuneIf::Error_t

4.2.3.9 virtual Error_t C4TuneIf::ResetInstance () [pure virtual]

resets the instance, should be called when a new song is to be processed

Returns

an error code of type CSOLOIST4TuneIf::Error_t

4.2.3.10 virtual Error_t C4TuneIf::SetNewNoteOn (Notes_t iNoteIdx) [pure
virtual]

set a new note on for each note and pause (kNoNote) - this re-triggers averaging of the
current offset result needs to be called before the next Process call after a note change

Parameters
iNoteIdx the index of the desired note

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

5 File Documentation 15

Returns

4.2.3.11 virtual Error_t C4TuneIf::SetParamValue (Param_t iParamIdx, float
fValue) [pure virtual]

sets the value for a specific parameter (see CSOLOIST4TuneIf::Param_t)

Parameters
iParamIdx the index of the desired parameter

fValue the desired value for the parameter

Returns

The documentation for this class was generated from the following file:

• 4TuneAPI.h

5 File Documentation

5.1 4TuneAPI.h File Reference

Classes

• class C4TuneCallbackBase
• class C4TuneIf

5.2 docugen.txt File Reference

5.2.1 Detailed Description

source documentation main file

Definition in file docugen.txt.

Generated on Fri Feb 9 2018 16:03:50 for 4TUNE by Doxygen

	4Tune Documentation
	Introduction
	API Documentation
	Naming Conventions
	Instance Control Functions
	Parameter Setting Functions
	Process Function
	Parameter and Result Retrieving Functions
	Usage Example
	Error Codes

	SDK Content
	Folder Structure
	Project Structure

	Third Party Libraries
	Support

	Class Index
	Class List

	File Index
	File List

	Class Documentation
	C4TuneCallbackBase Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	C4TuneIf Class Reference
	Detailed Description
	Member Enumeration Documentation
	Member Function Documentation

	File Documentation
	4TuneAPI.h File Reference
	docugen.txt File Reference
	Detailed Description

